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A mathemetical framework for a realistic quantum probability theory is pre- 
sented. The basic elements of this framework are measurements and amplitudes. 
Definitions of the various concepts are motivated by guidelines from the path 
integral formalism for quantum mechanics. The operational meaning of these 
concepts is discussed. Superpositions of amplitude functions are investigated 
and superselection sectors are shown to occur in a natural way. It is shown that 
this framework includes traditional nonrelativistic quantum mechanics as a 
special case. Proofs of most of the theorems will appear elsewhere. 

1. I N T R O D U C T I O N  

One o f  the  impor t an t  unso lved  p rob l ems  in m o d e r n  physics  is to find 
a unif ica t ion o f  genera l  re la t ivi ty  theory  and qua n tum mechanics .  Dur ing  
the pas t  20 years  a cons ide rab le  a m o u n t  o f  research  has been  devo ted  
t oward  a t t empt ing  to m o d i f y  genera l  re la t ivi ty  theory  to make  it fit with 
quan tum mechanics .  These  a t tempts  have not  been  ent i re ly  successful .  It 
has recent ly  been  sugges ted  that  pe rhaps  we shou ld  turn the s i tua t ion  a r o u n d  
and  try to mod i fy  q u a n t u m  mechanics  to make  i t  fit with genera l  re la t ivi ty  
(Penrose  and  Isham,  1986). In  this work  we out l ine  such a poss ibi l i ty .  

The f r amework  that  we p resen t  is not  rea l ly  a modi f i ca t ion  o f  t r ad i t iona l  
quan tum mechanics ,  bu t  is a genera l i za t ion  or  ex tens ion  o f  it. This fo rmula-  
t ion does  not  con t rad ic t  t r ad i t iona l  q u a n t u m  mechanics ,  but  inc ludes  it as 
a special  case. One o f  the ma in  differences be tween  genera l  relat ivi ty and  
t r ad i t iona l  quan tum mechan ics  is that  the fo rmer  is a real is t ic  theory,  whi le  
the lat ter  is nonreal is t ic .  It is our  view that  this  difference must  be reconc i l ed  
i f  the two theor ies  are to be melded .  In  a real is t ic  theory ,  a phys ica l  system 
possesses  its var ious  p rope r t i e s  or  a t t r ibutes  i n d e p e n d e n t  o f  the i r  measure -  
ment.  That  is, the p roper t i e s  o f  a system have mean ing  (both  phys ica l  and  
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mathematical) even if they are not observed. In the usual interpretations 
of traditional quantum mechanics, such a meaning cannot be given (for 
example, the unobserved position and momentum of an electron). 

Although the path integral formalism (Feynman, 1948; Feynman and 
Hibbs, 1965) does allow a realistic interpretation for quantum mechanics, 
it is not mathematically rigorous and we cannot be sure that it gives 
consistent results (Gudder, 1988; Prugove~ki, 1984), Nevertheless, this 
formalism is frequently employed in calculations of high-energy physics 
and often the results agree with experiment (Feynman, 1949; Ryder, 1985). 
Because of this agreement, many investigators are confident that the path 
integral formalism contains a germ of the truth. For these reasons, we shall 
employ this formalism as a guide for constructing our defining concepts. 
It is hoped that the resulting framework witl not only provide a means of 
unifying general relativity and quantum mechanics, but will give a rigorous 
formulation of quantum field theory in terms of a mathematically well- 
defined path integral formalism. 

2. GUIDELINES 

Borrowing from ideas of the path integral formalism, we adopt the 
following guidelines. 

1. We accept the fact that probabilities in quantum mechanics are 
computed in terms of (probability) amplitudes. 

2. An outcome of a measurement is the result of various interfering 
alternatives and each of these alternatives possesses an amplitude 
for occurring. 

3. The amplitude of an outcome is the "sum" of the amplitudes of the 
alternatives from which it results. 

4. The probability of an outcome is the modulus squared of its 
amplitude. 

5. The probability of an event for a measurement is the "sum" of the 
probabilities of the outcomes composing it. 

We now amplify the meaning of the above guidelines. We first assume 
that a physical system (object) is in precisely one of a set of possible 
configurations (alternatives, potentialities) and that each configuration has 
a probability amplitude of occurring. When the system interacts with a 
measuring apparatus, an outcome results. In general, a particular outcome 
can result from many interfering configurations. By interfering we mean 
that the configurations cannot be distinguished without disturbing the 
system; that is, other measurements would be needed. The amplitude of an 
outcome is found by summing (in the discrete case) or integrating (in the 
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continuum case) the amplitudes of  the configurations that result in that 
outcome upon executing the measurement.  The first four guidelines then 
complete the usual axioms of quantum probabili ty in accordance with the 
"sum over histories" formalism (Feynman, 1948; Feynman and Hibbs, 
1965). The fifth guidelines is based on classical probability theory. This is 
because we are now describing a completed measurement,  so no interference 
is in effect. That is, the various outcomes are already distinguished by the 
original measurement  itself. In this case, an outcome is considered to be 
an irredcucible (elementary) event and a general event is a union of out- 
comes. In classical probabili ty theory, the probabili ty of  an event is the 
sum of the probabilities of  the outcomes composing it (in the discrete case) 
or the integral of  a probabili ty density (in the continuum case). 

3. M A T H E M A T I C A L  F R A M E W O R K  

We now present a rigorous mathematical  framework based on the 
previous guidelines. This f ramework can then be used to construct a mathe- 
matical model for describing a particular physical system. 

Let X be a nonempty  set called a sample space and whose elements 
we call sample points. The sample points correspond to the possible configur- 
ations of  a physical system S. In practice, it would be impossible to describe 
the configurations delineating all the properties of  S (for example, some 
properties might be unknown),  so configurations are limited to those proper- 
ties on which we wish to focus. A measurement is a map F from X onto 
its range Y F  = F(X)  satisfying: 

(M1) YF is the base space of a measure space (YF, s VF). 
(M2) For every y ~ YF, F-I(Y) is the base space of a measure space 

( F-I(y), s lay). 

We call F - l ( y )  the fiber over y, the elements of  YF are called F-outcomes, 
and the sets in s are F-events. Notice that 

g ( F )  ~- { F - ' ( B ) :  B ~ s 

is a ~r-algebra of  subsets of  X. A measurement  F corresponds to a laboratory 
procedure or experiment that can be performed on S. For every x c X, F (x )  
denotes the outcome resulting from executing F when S has configuration 
x. For y s YF, the fiber F-l(y) is the set of  sample points that result in 
outcome y, and for B c s F-~(B) is the set of  sample points that result 
in the event B, when F is executed. The measure vF is an a priori weight 
for the F-events that is independent of  the state of  S. In case of  total 
ignorance, VF is a uniform measure such as Lebesgue measure, Haar  
measure, or the counting measure in the discrete case. Similarly, /Zy is an 
a priori weight for the sample points in the fiber F-~(y). 
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An example of a measurement is the position measurement F(q, p) = q 
where 

X =R 2"--{(q,p): q , p ~ ' }  

is a phase space and the measures are the usual Lebesgue measures. In this 
case, the fiber F-~(q) is the "vertical" set q • R ~. We consider this example 
in detail later. As a second example, let X = { x ( t ) :  t cR}  be a set of 
trajectories for a particle. For each time t, define the measurement F,(x) = 
x(t). For y~  IF,, the fiber 

F ; l ( y )  = (x ~ X: x( t) = y) 

consists of all trajectories that have position y at time t. Of course, care 
must be taken in defining the corresponding measure spaces (we shall not 
consider the technical details here). 

A function f :  X -~ C is an amplitude density for the measurement F if 
the following conditions hold: 

(A1) f]F-~(y)~U(F-l(y) ,~.y, l~y)  for every y~ YF. 

(A2) F ( f ) ( y ) - -  / fd~y ~ L2(IF, ZF, Vr) =- Hr. 
d r-I(y) 

(A3) IIF(f)ll = j ]F(f)] 2 dvr = 1. 

We interpret f (x)  as the probability amplitude density at the configuration 
x (Guideline 2). Since F-l(y)  is interpreted as the set of configurations that 
result in outcome y upon execution F, F(f)(y)  corresponds to "summing" 
the amplitudes over these alternatives. We call F(f )  the F-wave function 
forf .  Now, F(f)(y)  gives the amplitude density of y (Guideline 3) and the 
resulting probability density is IF(f)(y)[ 2 (Guideline 4). Axiom (A3) is 
motivated by Guideline 5. 

We now summarize the physical interpretations of our previous con- 
cepts. The sample space X represents an underlying objective physical 
reality. An amplitude density f determines a model for the physical reality 
that enables us to compute probabilities for outcomes and events. The 
Hilbert space Hr gives a "projection" of physical reality resulting from 
executing the measurement F. If various measurements F, G, . . .  are 
executed, the Hilbert spaces Hr ,  He ,  �9 �9 �9 each give a view of physical reality 
X, but in general, miss a complete description of X. 

Let F be a measurement and let f be an amplitude density for F. A 
set A c  X is a generalized (F , f )  event if the following conditions hold: 

(El)  Ac~F-~(y)~Ey  for every Y~Yr .  

(E2) fr(A)(y)  ~ I fdtiy ~ HF. 
d Ar~r-l(y) 
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We denote the set of  generalized (F,f) events by ~(F,f) .  The elements of  
~(F,  f )  are the subsets of  X for which a reasonable amplitude density fF (A) 
can be defined. In fact, fv(A)(y) is the " sum"  of the amplitudes over the 
configurations in A that result in the outcome y upon executing F. Interpret- 
ing ]fF(A)[ 2 as the probabili ty density of  A ~ ~(F,f) ,  it becomes reasonable 
to define the (F,f) probability of A as 

PF, f(A) = f ]f~(A)l 2 d ,~  = IIf~(A)ll = 

We also define the (F,f) pseudoprobability of A c  $(F, f)  as 

P'v,I(A) = f f v (A) f v (X)  dvv = ( fF(A), fv(X))  = (fe(A), F(f)) 

A nonempty collection 5 0 of  subsets of  X is an additive class if 50 is 
closed under the formation of complements and finite disjoint unions. 
Moreover, if 50 is closed under  the formation of countable disjoint unions, 
then 50 is a o'-additive class. We denote the complement  of  a set A by A c 
and its characteristic function by XA. 

Lemma 3.1. (a) $(F, f )  is an additive class containing $ (F) .  
(b) For every B c ~v,  

PF, f[F-I(B)] = P'~#[F-1(B)] = f IF(f)l 2 d~'F 
d 13 

(c) P~,I is an additive, complex-valued set function on 8 ( F , f )  with 
P'F.f( X ) = 1. 

We use the notation Pvd(B) =-- Pv.s[F-I(B)] for B ~ Ev. It is clear that 
PF.I is a probabili ty measure on Ze and we call it the f-distribution of F. 
Although P~.I is additive on ~(F,f) ,  it has the disadvantage of being 
complex-valued, so it cannot be interpreted as a probabili ty for an arbitrary 
A ~ ~(F,f) .  On the other hand, PF.f is nonnegative, but it is not necessarily 
additive and it may attain values larger than 1 on ~(F,f).  Hence, Pv.i is 
not a probabili ty measure on ~(F,f)  in general. We now show that these 
difficulties can be overcome under certain conditions. 

Let 50_c_ ~ ( F , f )  be an additive class. We say that an amplitude density 
f is F-orthogonally scattered over 50 if for A, B 6 50 with A c~ B = ~ we have 
f~ (A)•  [i.e., (fF(A),fF(B))=O]. We say that f is F-orthogonal at 
A c  ~(F,f)  i f fv(A)•  Notice that i f f  is F-orthogonally scattered 
over 50, then f is F-orthogonal  at every A c 50. Also, f is F-orthogonal at A 
if and only i f f  is F-orthogonally scattered over {X, Q, A, AC}. When we 
say that tL is a probabili ty measure on an additive class 50, we mean that 
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is o--additive. That is, if A~ ~ 9O, i = 1, 2 , . . . ,  are mutually disjoint and 
U a~ e 9O, t h e n / ~ ( U  Ai) = El ~(a~).  

Theorem 3.2. Let f be an amplitude density for the measurement F. 
(a) f is F-orthogonally scattered over g (F ) .  
(b) For A c g ( F , f ) ,  PF.y(A) = P'F,f(A) if and only i f f  is F-orthogonal 

at A. 
(c) If 9oc_ g ( F , f )  is an additive class, the following statements are 

equivalent: 
1. f is F-orthogonal at every A r 9O. 
2. PF, f(A) = PIv, f(A) for every A ~ 9O. 
3. PF, I and P'v,f are probability measures on 9 ~ 
(d) If  f is F-orthogonal at every A~ g ( F , f ) ,  then g{F , f )  is a o-- 

additive class and Pv.f = P'F,y is a probability measure on g (F , f ) .  

If A �9 g ( F , f )  with fF(A) # 0 and B �9 EF, we define the conditional 
(F,f) probability of B given A by 

PF, I(BIA) =- ~ ]iF(A)[ 2 &'F/ PF, f(A) = IIxBfv(A)]I2/IIfv(A)II 2 
d B 

Notice that PF, f(" I A) is a probability measure on s We now show that 
PF, f(BIA ) has the usual properties of a conditional probability. 

Lemma 3.3. (a) Pe, f(B]X) = PF, f(B) for all B e EF. 
(b) If  BEEF, A6 g ( F , f ) ,  then F-I(B)c~Ae g ( F , f ) ,  and 

PF, f( B]A ) = PF, T[ F-I( B ) n A ]/ Pv, T( A ) 

(c) If B, C e s then 

Pe, f(B[F-'( C)) = Pe, f(B ~ C)/ PF, f( C) 

We denote by L2(F,f) the set of functions g:X-->~ satisfying the 
following conditions: 

(F1) g-'(B)~ g ( F , f )  for every B E B ( ~ ) .  

(F2) gflF-l(y)e  L~(F-l(y),s for every y ~  Ye. 

(F3) fv(g)(Y) =- ~ giddy r HE. 
J e-l(y) 

Notice that for A e g ( F , f )  we have XAe L2(F,f) and fF(XA)=fe(A), SO 
fF(g) generalizes the amplitude density of generalized events. We denote 
by L2w(F,f) the set of functions g : X ~ R  satisfying (F2) and (F3). It is 
clear that L2w(F,f) is a linear space. However, L2(F,f) need not be linear, 
since it is not necessarily closed under summation (Gudder, 1984). 
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For ge L2w(F,f) we define the (F , f )  pseudoexpectation of g by 

Er, f (g)  = (fF(g),  F(f)) = (fF(g),fF(1)) 

where 1 =Xx. It is clear that EF.f(g) is linear on L2w(F,f) and Ev, f(1)= 1. 
Since EF.f(XA)= P~.f(A) for all A c  ~(F,f), we see that E~.f is the natural 
linear extension of P~.y- Unfortunately, Ev, f(g) need not be real and EF, I(g) 
need not be nonnegative when g is nonnegative. We now show that these 
difficulties do not occur under certain conditions. Suppose g ~ L2(/7, f ) .  Then 

~g(F,f) = {g-1(B): B e  B(~)} 

is a o--subalgebra of ~(F,f).  I f f  is F-orthogonal at every A ~ ~g(F,f), then 
by Theorem 3.2(c), PF.y is a probability measure on ~g(F,f) ,  so 
(g-l(R),  ~g(F,f) ,  PF, f) becomes a probability space. We then define the 
Lebesgue integral S g(x) PF, s(dx) in the usual way. 

(a) If geL~(F,f)  and f is F-orthogonal at every A c  Theorem 3.4. 
~g(F, f ) ,  then 

f 
E~,~(g) = J g(x) P~,~(&) 

(b) If  g : Yr -* R is ZF-measurable and gF(f) c HF, then g o F satisfies 
the conditions of (a) and 

EF, f(g) =-- E~,s(g ~ F) = y g(y) P~,s(dy) = (gF(f), F(f)) 

Under the conditions of Theorem 3.4, we see that EF, y has the desirable 
properties of an expectation. We can also define pseudo-conditional 
expectations in a natural way. Let A e ~ ( F , f ) ,  g e L 2 ( F , f ) ,  and define 

fe(glA)(y) = f g f  dl~ y 
d F-l(y)r~A 

The ( F,f) pseudo-conditional expectation of g given A is defined as 

EF, u(glA ) _ (fF(gla), fF( l [  a)) _ (fF (g I a), fF(a)) 
PF, s(A) IIUF( A )II 2 

Notice that if g =XF-'(B) for B e ZF, then 

f~(XF '(B) IA) = XF-'(B)fF(A) 

and 

EF, I(XV '(B)IA)= PF, I(BIA) 
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4. O P E R A T I O N A L  M E A N I N G  

In Section 3 we defined probabilities, conditional probabilities, and 
expectations. We now discuss their operational meaning; that is, the labora- 
tory procedures that are modeled by the mathematical  definitions. For 
brevity, we consider the probability P~,y(A) of a generalized event A, since 
the other definitions have similar meanings. 

For simplicity, suppose that the sample space X is a finite set and that 
F :  X --> Yp is a measurement  with outcome set Y~ = {Yl, - - -, Yn}. We assume 
that the measures vp, ~yi, i= 1 , . . . ,  n, are counting measures. Thus, for 
example, vF(yi) = 1, i = 1 , . . . ,  n. We interpret PF.y(yi) as the long-run rela- 
tive frequency of yi. That is, we execute the measurement F a large number  
of  times N, and each time the system is reconstructed in accordance with 
the amplitude density f. I f  Yi results ni times, then PF, f(Yi) ~ ni/N. Now let 
A c X be a laboratory event; that is, an event that can be prepared in the 
laboratory. Then A c is also a laboratory event, since A c occurs if and only 
if A does not occur. We interpret PF, f(Y~[A) as the long-run relative 
frequency of y~ when A is prepared. Operationally, this is similar to P~,I(Y~) 
except that we prepare the event A each time before executing F. We thus 
have the operationally significant quantities PF.I(Y~), P~,f(y~]A), 
PF, I(y~IAC), i =  1 , . . . ,  n, and any other quantities that can be defined in 
terms of these are themselves operationally significant. 

We interpret PF, f(A) as the probability of  A as viewed by the measure- 
ment F when the system is described by the amplitude density f. Thus, 
executions of  F provide information about the likelihood of an A occurrence 
and this information is contained in PF, y(A). A different measurement  G 
would, in general, provide a different view of the system and give its own 
version Pc,f(A) for the probability of A. We interpret If~.-(A)(yi)[= as the 
probability that A occurs and the outcome y~ results upon executing F, 
i =  1 , . . . ,  n. We must now give an operational meaning for If~(A)(y,)12; 
that is, we must define this quantity in terms of  our previously defined 
operationally significant quantities. Once this is done, we shall have an 
operational meaning for 

PF, f(A) = ~ I z : (a) (y i ) l  2 
i = 1  

For i = 1 , . . . ,  n, we write 

IfF(A)(y~)]= = Pv, f(y~)P(A; y~) 

where we interpret P(A; y~) as the probability of  A as viewed by y;; that 
is, the probability that A would have occurred if an execution of F results 
in the outcome yl. We now give an operational meaning for P(A; y~), 
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i = 1 , . . . ,  n. The operational content of P(A; Yi) is contained in the equation 

PF, I(Yi) = PF, f(A; y~)PF, f(Y~ [A)+ Pr, i(AC; Yl)PF, s(Y~ [ Ac) (4.1) 

Notice that (4.1) is a type of Bayesian condition. It is also operationally 
reasonable to assume t h a t  

PF, x(A; y,)+ Pv, f(AC; yi) = 1 (4.2) 

For simplicity, we shall assume that 

PFj(Y, f A) ~ PF, f(Y~ t Ac) (4.3) 

for every i = 1 , . . . ,  n. Equation (4.3) essentially states that A and F are 
stochastically dependent. In fact, Lemma 4.1 will show that in classical 
probability theory equation (4.3) is equivalent to stochastic dependence. If 
(4.3) does not hold, then A and the outcome y~ would be stochastically 
independent and y~ would give no additional information concerning A. 
Under the assumption of (4.3) we can apply (4.1) and (4.2) and solve for 
PF, f(A; y~) to obtain 

PF, f(Yi) -- PF, f(Yi [A ~) 
PF, f(A; y,) - PF, y(Y, [A) - PF, f(y, [A c) (4.4) 

We thus see that PF, f(A; y~), i = 1 , . . . ,  n, are operationally significant and 
hence PF, f(A) has an operational meaning given by 

PF, f(A) = ~ PF, y(y,)P(A; yi) 
i = 1  

The next lemma shows that (4.4) holds in classical probability theory, 
and in this case for every i, j we have 

Pr.f(A; y~) = PF, f(A; ys) 
Lemma 4.1. Let A, B be events in a probability space (~,  Z, P) satisfy- 

ing P(A), P(A c) ~ O. 
(a) P(BIA)= P(BIA c) if and only if A and B are stochastically 

independent. 
(b) If P(BIA)r  then 

P ( B ) - P ( B I A  c) 
P(A) = p(BIA)  _ p(SlAC ) 

Proof. (a) If A and B are stochastically independent, then A c and B 
are stochastically independent, so we have 

P(BIA ) = P(S)= P(BIA c) 

Conversely, if P(BIA) = P(B]A~), then 

P ( B ~ A )  P(Bc~A ~) P (B ) -P (Bc~ A)  
- - ( 4 . 5 )  

P(A) P(A ~ ) 1 -  P(A) 
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Solving (4.5) gives P(B c~ A) = P(A)P(B) and hence A and B are stochasti- 
cally independent. 

(b) It follows from Bayes'  law that 

P(B) = P(A)P(BIA)  + p(AC)p(BIA c) 

= P(A)P(BIA  ) + [1 - P(A)]P(B[A ~) 

= P(A)[P(BIA ) - p(BIAC)] + P(B1A c) 

and the result follows. [] 

5. C A T A L O G S  AND AMPLITUDE SPACES 

Section 3 considered single measurements on a sample space X. We 
now consider a catalog M(X),  which is a nonempty collection of measure- 
ments on X. A function f : X ~ C  is an amplitude density for M(X)  i f f  is 
an amplitude density for every F e M(X).  Denote the set of  all amplitude 
densities on ~r by o~(M). We say that a catalog M(X)  is complete if for 
any x # y in X there is an F ~  M(X)  such that F(x) # F(y). 

Let M(X)  be a catalog. The set of functions f :  X -> C satisfying (A1), 
(A2) of Section 3 for all F e M(X)  and 

(A3') Ilfll ~llf(f)ll-~=llG(f)ll-~ for all F, G e M ( X )  

is called the amplitude space of M and is denoted H(M).  The elements of 
H ( M )  are called amplitude functions. Notice that 

H ( M )  = {af: c~ e C , f e  ~-(M)} 

and i f f ~  H ( M )  with Iifll ~ 0, then f/llfl[ c ~(M) .  Of course, i f f e  H ( J ) ,  
then a f e  H(M) for every a c C .  However, if f, g e  H(M) ,  we need not have 
f +  g e H(M) .  I f  af+ fig e H(.ff), f, g e H(M), and o~,/3 e C, we call c~f+/3g 
a superposition o f f  and g. We now characterize pairs f, g e H ( M )  for which 
superpositions are possible. For f, g e H ( M )  we writefsg if for every F, G 
M(X)  we have 

(F(f) ,  F(g))HF = (O(f) ,  G(g)),o 

Notice that s is a reflexive, symmetric relation and fsg implies (cef)s(/3g) 
for all ~,/3 e C. 

Lemma 5.1. Let f, g ~ H(M). Thenfsg if and only if f +  g , f  + ig E H(M). 
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It follows from this lemma that f ig  if and only if af+/3g ~ H(M) for 
every a, 13 c C. For A___ H ( M )  we write 

A s = {g e H(M):  gsf for all f e  A} 

A set A ~ H ( M )  is a superposition set (or s-set) if A c_ A s. Every s-set is 
contained in a maximal s-set. Moreover, A is a maximal s-set if and only 
if A = A s (Gudder,  1986). Denote the set of  maximal s-sets by M(H). Let 
A eM(H).  I f f e  A, a e C, then (af)sg for every g e A. Since A is maximal,  
afEA. I f f  geA,  then f + g e  H ( M )  and (f+g)sh for every h eA. Again, 
by maximality, f + g  e A. Hence, A is a linear space. For f, g E A, define 
( f  g) = (F(f), F(g)) for every F e M. Then it is clear that ( f  g) is an inner 
product on A. Thus, each A e M(H) forms an inner product space. 
Moreover, it is clear that for every A e M ( H )  and FcM, F:A-->Hf is a 
linear isometry. The pair (H(M) ,  s) gives a partial inner product space 
(Gudder,  1986). One can complete (H(M) ,  s) in a natural way to obtain a 
partial Hilbert space. Such structures generalize direct sums of Hilbert 
spaces (Gudder,  1986). We call the sets A e M(H) superselection sectors. 

We can apply our work in Section 3 and compute probabilities and 
expectations for a catalog M = M(X).  Let F, G e M  and let f e  ~ (M) .  I f  
A e 1s and G-~(A) e ~(F,f), then Pv, y[G-Z(A)] is interpreted as the "prob-  
ability" of  the G-event  A upon execution of an F-measurement.  
Operationally, this means that if a G-measurement  is executed followed by 
an F-measurement ,  then Pv, y[G-~(A)] is the "probabil i ty" that G results 
in an outcome in A. I f  AeY-G, BeNt:, and G-~(A)e~g(F,f), then 
Pv.f(B[G-~(A)) is the probability that an F-measurement  results in an 
outcome in B given that a previous G-measurement  resulted in an outcome 
in A. I f  G is a real-valued measurement with Ge L2w(F,f), then Ev, y(G) 
is interpreted as the "expectat ion" of G determined by an F-measurement.  
In general this differs from the ordinary expectation EG.y(G) of G. 

6. P H A S E  S P A C E  M O D E L  

This section presents an amplitude phase space model for a simple 
quantum system. The system consists of  a single nonrelativistic, spinless 
particle constrained to one dimension. (The model can easily lae generalized 
to three dimensions.) We take for our sample space the two-dimensional 
phase space 

X =~2={(q,p): q, pe~}  

Define the measurements Q:X-->•, P : X ~ R  by Q(q,p)=q, P(q,p)=p 
and let Z o = ~e  = B(~),  dz, Q = dq, dvp = dp. On the fiber Q-l(q) = q x ~ we 
let E q = q x B ( ~ ) ,  dtxq=dp and on P- l (p )=~xp  we let E p = B ( R ) x p ,  
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d p ,  p = dq. Of course, Q and P correspond to position and momentum 
meaourements, respectively. Then M = {Q, P} is a complete catalog on X. 
I f f ~  i f ( J ) ,  we have 

Q(f)(q) -- J f(q, p) dp ~ L2(R, dq) 

P(f)(P) = I f(q'P) dq ~ L2(~, dp) 

II Q(f)ll--HP(f)ll = 1 

We now construct a class of physical amplitude densities that corre- 
spond to the traditional quantum states. For 

0 E L2(R, dq) c~ L~(~, dq) (6.1) 

we denote the Fourier transform by 

= (2"n'h) -1/2 f O(q) e-iqp/h dq 

and the inverse Fourier transform by 

~(q) = (27rh) -1/2 f tp(p) e 'qp/~ dp 

A A 

We say that f ~  i f ( d )  is regular i f fo (A x R) =fp(A x R) and fo(N x A) = 
fp(N x A) for every A ~ B(R). It is shown in Gudder  (1985) that f is regular 
if and only if (1) for every p ~ R 

f(q, p) = (27rh)-~/2Q(f)(q) e -iqp/h a.e. [q] 

and (2) for every q ~ 

f(q, p) = (2~rh)-~/2Q(f)~(p) e iqp/~ a.e. [p] 

It is not clear that regular amplitude densities exist, and from conditions 1 
and 2 we see that if they exist, they must be nonmeasurable. Nevertheless, 
it is shown in Gudder  (1984) that for every ~ satisfying (6.1) there exists 
a regular f such that Q(f) = 0. Intuitively, the regular f are those for which 
the Fourier transform of position is momentum. Moreover, 0 = Q(f) is a 
traditional quantum state. 

Let f be regular with Q(f) = tp. We then have 

P(f)(p)  = f f(q, p) dq = (2~h) -1/2 f ~b(q) e -iqp/h dq = 
3 3 
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Hence, for every A~ B(R) we have 

Po'f(A) = fA I@(q)l~ dq, 

205 

f i ,'~ 2 Pp, i (A )=  I@(p)l @ 
A 

which are the usual quantum mechanical formulas. Moreover, we have 

f~ fA f(q'P)dp=(2"rrh)-i/2 fA S(P)eiqP/~' dp=(XA~S)'(q) 
Hence, 

PQ, f[P-'(A)] = II(xA~)lll= = IIxA~II2 = JA I~(P)l= @ 

We can thus get information about P by measuring Q. Notice that 
Po, y[P-I( �9 )] is a probability measure. It follows that f is Q-orthogonal on 
$(P) .  In fact, f is Q-orthogonally scattered on ~(P) .  Indeed, suppose 
A, B e B(R) and A (3 B = ~ .  Then (R x A) • (R x B) = Q and we have 

A ~ A v A A 

(fQ[P-I(A)],fo[P-~(B)]) = <(XA6) , (XBdS) ) = <XA@, XBt]l> = 0 

Similarly, 

Pp, y[Q-'(A)] = JA ]~b(q)[2 dq 

and f is P-o~hogonally scattered on ~(Q).  
If A, B ~ B(•), then 

pQ, f( A i P-I(  B ) ) = XAfQ[ p- i (  B ) ] ]i2/HfQ[p-,(B)] ]]2 

^ ~ 2  ~ ' 2  
= IIXA(XBO) II /IIx~*II 

Similarly, 

Pp, s( A I Q - ' (  B ) ) = IIXA(XBC~)All2/ IIxBO ll 2 

It is shown in Gudder  (1984) that these reduce to the traditional von 
Neumann-Lfiders formulas 

PQ, f(A] P-I(B))  = tr[EQ(A)EP(B)PoEP(B)]/[tr EP(B)P~,] 

ppd(AIQ-I(B))  = tr[Ee(A)EO(B)P,  EQ(B)]/[tr E~  

where Pc is the one-dimensional projection onto ~ and E Q, E P a r e  the 
spectral measures for Q and P, respectively. 
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In the sequel, we shall assume that 0 is a Schwartz test function and 
that f is regular with Q(f)  = ~. We then.obtain 

Ep, f(P[ Q-'(A)) = (fp(P] Q I(A)),fp(Q-'(A)))/PP, y[Q-~(A)] 

= (pf,,(Q-~(a)),fp(Q-~(a)))/IIXAqJ l]2 

= ff P[(XAtP)̂ 12 dp/fAlOl2 dq 

In particular, 

Similarly, 

Ep, f (P)  = f plq~(p)i 2 dp 

EQ, f(Q) -- J q]~9(q)l 2 dq 

We also have 

fQ(P)(q)= i Pf(q'P) dp 

= (2~rh) -1/2 f ptp(p) e iqp/~ dp 

1/2// , d \ f t~(p) eiqP/~ dp =-ihd-~q(q) 

Let R(s~) ~ H(~/) be the set of all scalar multiples of regular amplitude 
functions. Then it is clear that R(sg) c_ R(sd) s, so R(sr is a linear subspace 
of a superselection sector of H(s~). We can then represent Q and P as 
operators Q and P on H o = L2(N, dq) as follows: 

(~qJ(q) = qO(q) 

PrO(q) = fiQ(f)( q) = fo( P)( q) = (-ih d / dq )~( q) 
Z A  

If we define P~b(p) =p0(p) ,  the following theorem holds (Gudder, 1985; 
Prugove~ki, 1984): 

Theorem 6.1. If G(q, p)=Y am.qmp" is a polynomial, then 

~m " n  fo(G)(q) =~ amnQ P O(q) 
~ n  " m  A 

fp(G)(p)=~ am.P (Q ~) (p) 
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It follows that any polynomial G(q, p)= ~ amnqmp ~ can be represented on 
L2(~, dq) by the operator G = ~ ~m - ,  a,,,Q P .  Moreover, 

Eo,/( G ) = (y. am,OmP"to, to) 

am,P Q tO, to) ~ , z ( c )  = ( 2  - ~  - m 

Thus, the pseudoexpectation of G depends on which measurement is 
executed. For example, let G(q,p)= qp. We then obtain the following 
version of the Heisenberg commutation relation: 

EQ, f( G ) - Ep, f( G) = <[ Q, P]4', to)= i/~ 

The reason that EQ, I(G) and Ep, s(G) are complex-valued is that f is not 
Q-orthogonal or P-orthogonal on the o--algebra {G-I(A):  A e  B(R)}. The 
usual uncertainty relation can be obtained by taking variances. 

We now consider Schr6dinger's equation. Suppose the classical Hamil- 
tonian is 

2 

H(q,p) = P----+ V(q) 
2m 

If the system is closed, then we have conservation of energy 

i-i(q, p) = E (6.2) 

Now supppose f ~  ~-(~r is regular with 0 = Q(f). Taking the Q-amplitude 
average of (6.2) gives fo[H(q,p)] =fo(E). Using the linearity of fo and 
Theorem 6.1, we obtain 

H((~,/5)to = (/52/2m) ~ + V((~) to = Eto 

Of course, this is the time-independent Schr6dinger equation and E, 0 form 
an eigenpair for the operator H(Q, P). 

Now suppose the classical dynamics is generated by the Hamilton 
equation 

dp/dt = -OH/Oq (6.3) 

We assume that for any time t ~ N the system is described by a regular 
amplitude density f(q, p, t) with corresponding vector to(q, t) = Q(f)(q, t) 
and, moreover, f and to are differentiable with respect to t. Suppose (6.3) 
holds in the Q-amplitude average in the sense that 

dt Pf(q'P' t) dp=-~q  H(q,p)f(q,p, t) dp (6.4) 
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Then (6.4) has the form 

d = -~qfQ(H) -~fQ(P) 

Gudder 

Applying Theorem 6.1 gives 

d / . dq, \  -~-th-~q) =--~qH( Q, P)~ (6.5) 

Interchanging the order of  differentiation in (6.5) gives 

O (_ihO~P ~ = _ 0  H(  Q, ff')qJ (6.6) 
Oq k Ot ] Oq 

Integrating both sides of  (6.6), we obtain (except for a constant that we 
can set equal to zero) 

ih O~/Ot = H(  Q, P )6  

This, of  course, is the t ime-dependent Schr6dinger equation. We conclude 
that Schr6dinger's equation is an amplitude-averaged version of the Hamil- 
ton equation of classical mechanics. 

I f  we use the other Hamilton equation dq/dt=OH/Op and take the 
P-ampli tude average, we obtain 

d ) -~ fp  ( S t  ~ f e ( q  = 

Proceeding in a similar way, we obtain the Fourier-transformed time- 
dependent  Schr6dinger equation 

A p 2  A 

i~ ~ r 
Ot 2m 
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